博客
关于我
darknet训练自己的数据——yolo v3/yolo v4
阅读量:583 次
发布时间:2019-03-11

本文共 767 字,大约阅读时间需要 2 分钟。

前言

darknet框架是纯C语言的,适合运行在编译环境下,目前深度学习目标检测性能十分好的yolo系列也是可以运行在这个框架下的,接下来我就总结一下darknet训练自己的数据——yolo v3/yolo v4。

darknet训练自己的数据——yolo v3/yolo v4

打标签

同之前的keras版本yolo v3打标签方式,具体见我之前的链接:

,只参考其中一、制作自己的VOC格式训练集——打标签(labelImg软件) 即可。

准备其他

1 、obj.names

该文件中保存的是检测物体的名称。假设有一个车辆检测的项目,检测有没有车辆。那么obj.names文件中就这样写:

car

每一类名称独占一行,这样是为了方便读取文件中的内容,我们只需要通过换行符就可以轻松分割并读取obj.names中每个类别的名称。

1 、obj.data

obj.data 该文件中保存着五类信息:类别数量,训练集,验证集,类别名称和保存权重的文件

classes= 2                        # 2表示数据集中只有两类可检测的物体train  = data/train.txt           # 表示保存训练数据集的地址test= data/test.txt            # 表示保存验证数据集的地址names = data/obj.names            # 表示可检测物体的名称backup = backup/                  # 表示保存训练权重的文件

obj.data文件其实就是一个汇总文件,yolov4需要的数据集地址,数据集标签以及信息的时候就是从这个文件中得到的。该文件涉及的内容在上下文都有涉及,这里就不再赘述。

参考文章

1、

2、

3、

4、

转载地址:http://vywtz.baihongyu.com/

你可能感兴趣的文章
NCNN中的模型量化解决方案:源码阅读和原理解析
查看>>
NCNN源码学习(1):Mat详解
查看>>
nc命令详解
查看>>
NC综合漏洞利用工具
查看>>
ndarray 比 recarray 访问快吗?
查看>>
ndk-cmake
查看>>
NdkBootPicker 使用与安装指南
查看>>
ndk特定版本下载
查看>>
NDK编译错误expected specifier-qualifier-list before...
查看>>
Neat Stuff to Do in List Controls Using Custom Draw
查看>>
Necurs僵尸网络攻击美国金融机构 利用Trickbot银行木马窃取账户信息和欺诈
查看>>
Needle in a haystack: efficient storage of billions of photos 【转】
查看>>
NeHe OpenGL教程 07 纹理过滤、应用光照
查看>>
NeHe OpenGL教程 第四十四课:3D光晕
查看>>
Neighbor2Neighbor 开源项目教程
查看>>
neo4j图形数据库Java应用
查看>>
Neo4j图数据库_web页面关闭登录实现免登陆访问_常用的cypher语句_删除_查询_创建关系图谱---Neo4j图数据库工作笔记0013
查看>>
Neo4j图数据库的介绍_图数据库结构_节点_关系_属性_数据---Neo4j图数据库工作笔记0001
查看>>
Neo4j图数据库的数据模型_包括节点_属性_数据_关系---Neo4j图数据库工作笔记0002
查看>>
Neo4j安装部署及使用
查看>>